Proton
The quark structure of the proton. (The color assignment of individual quarks is not important, only that all three colors are present.) |
|
Classification | Baryon |
---|---|
Composition | 2 up quarks, 1 down quark |
Statistics | Fermionic |
Interactions | Gravity, Electromagnetic, Weak,Strong |
Symbol | p, p+, N+ |
Antiparticle | Antiproton |
Theorized | William Prout (1815) |
Discovered | Ernest Rutherford (1917–1919, named by him, 1920) |
Mass |
1.672621777(74)×10−27 kg[1] |
Mean lifetime | >2.1×1029 years (stable) |
Electric charge | +1 e 1.602176565(35)×10−19 C[1] |
Charge radius | 0.8775(51) fm[1] |
Electric dipole moment | <5.4×10−24 e·cm |
Electric polarizability | 1.20(6)×10−3 fm3 |
Magnetic moment |
1.410606743(33)×10−26 J·T−1[1] |
Magnetic polarizability | 1.9(5)×10−4 fm3 |
Spin | 1⁄2 |
Isospin | 1⁄2 |
Parity | +1 |
Condensed | I(JP) = 1⁄2(1⁄2+) |
The proton is a subatomic particle with the symbol p or p+ and a positive electric charge of 1 elementary charge. One or more protons are present in the nucleusof each atom. The number of protons in each atom is its atomic number. The name proton was given to the hydrogen nucleus by Ernest Rutherford in 1920, because in previous years he had discovered that the hydrogen nucleus (known to be the lightest nucleus) could be extracted from the nuclei of nitrogen by collision, and was thus a candidate to be a fundamental particle and building block of nitrogen, and all other heavier atomic nuclei.
In the modern Standard Model of particle physics, the proton is a hadron, composed of quarks. Prior to that model becoming a consensus in the physics community, the proton was considered a fundamental particle. In the modern view, a proton is composed of three valence quarks: two up quarks and one down quark. The rest masses of the quarks are thought to contribute only about 1% of the proton's mass. The remainder of the proton mass is due to the kinetic energyof the quarks and to the energy of the gluon fields that bind the quarks together.
Because the proton is not a fundamental particle, it possesses a physical size—although this is not perfectly well-defined since the surface of a proton is somewhat fuzzy, due to being defined by the influence of forces that do not come to an abrupt end. The proton is about 1.6–1.7 fm in diameter.[2]
The free proton (a proton not bound to nucleons or electrons) is a stable particle that has not been observed to break down spontaneously to other particles. Free protons are found naturally in a number of situations in which energies or temperatures are high enough to separate them from electrons, for which they have some affinity. Free protons exist in plasmas in which temperatures are too high to allow them to combine with electrons. Free protons of high energy and velocity make up 90% of cosmic rays, which propagate in vacuum for interstellar distances. Free protons are emitted directly from atomic nuclei in some rare types ofradioactive decay. Protons also result (along with electrons and antineutrinos) from the radioactive decay of free neutrons, which are unstable.
At sufficiently low temperatures, free protons will bind to electrons. However, the character of such bound protons does not change, and they remain protons. A fast proton moving through matter will slow by interactions with electrons and nuclei, until it is captured by the electron cloud of an atom. The result is a protonated atom, which is a chemical compound of hydrogen. In vacuum, when free electrons are present, a sufficiently slow proton may pick up a single free electron, becoming a neutral hydrogen atom, which is chemically a free radical. Such "free hydrogen atoms" tend to react chemically with many other types of atoms at sufficiently low energies. When free hydrogen atoms react with each other, they form neutral hydrogen molecules (H2), which are the most common molecular component of molecular clouds in interstellar space. Such molecules of hydrogen on Earth may then serve (among many other uses) as a convenient source of protons for accelerators (as used in proton therapy) and other hadron particle physics experiments that require protons to accelerate, with the most powerful and noted example being the large hadron collider.
Contents |
Description
Protons are spin-½ fermions and are composed of three valence quarks,[3] making them baryons (a sub-type of hadrons). The two up quarks and one down quark of the proton are held together by the strong force, mediated by gluons.[2] A modern perspective has the proton composed of the valence quarks (up, up, down), the gluons, and transitory pairs of sea quarks. The proton has an approximately exponentially decaying positive charge distribution with a mean squareradius of about 0.8 fm.[4]
Protons and neutrons are both nucleons, which may be bound by the nuclear force into atomic nuclei. The nucleus of the most common isotope of the hydrogen atom (with the chemical symbol "H") is a lone proton. The nuclei of the heavy hydrogen isotopes deuterium and tritium contain one proton bound to one and two neutrons, respectively. All other types of atoms are composed of two or more protons and various numbers of neutrons.
Stability
The spontaneous decay of free protons has never been observed, and the proton is therefore considered a stable particle. However, some grand unified theories of particle physics predict that proton decay should take place with lifetimes of the order of 1036 years, and experimental searches have established lower bounds on the mean lifetime of the proton for various assumed decay products.
Experiments at the Super-Kamiokande detector in Japan gave lower limits for proton mean lifetime of 6.6×1033 years for decay to an antimuon and a neutral pion, and 8.2×1033 years for decay to a positron and a neutral pion.[5] Another experiment at the Sudbury Neutrino Observatory in Canada searched for gamma rays resulting from residual nuclei resulting from the decay of a proton from oxygen-16. This experiment was designed to detect decay to any product, and established a lower limit to the proton lifetime of 2.1×1029 years.[6]
However, protons are known to transform into neutrons through the process of electron capture (also called inverse beta decay). For free protons, this process does not occur spontaneously but only when energy is supplied. The equation is:
The process is reversible; neutrons can convert back to protons through beta decay, a common form of radioactive decay. In fact, a free neutron decays this way, with a mean lifetime of about 15 minutes.
Quarks and the mass of the proton
In quantum chromodynamics, the modern theory of the nuclear force, most of the mass of the proton and the neutron is explained by special relativity. The mass of the proton is about 80-100 times greater than the sum of the rest masses of the quarks that make it up, while the gluons have zero rest mass. The extra energy of the quarks and gluons in a region within a proton, as compared to the rest energy of the quarks alone in the QCD vacuum, accounts for almost 99% of the mass. The rest mass of the proton is, thus, the invariant mass of the system of moving quarks and gluons that make up the particle, and, in such systems, even the energy of massless particles isstill measured as part of the rest mass of the system.
Two terms are used in referring to the mass of the quarks that make up protons: Current quark mass refers to the mass of a quark by itself, while constituent quark mass refers to the current quark mass plus the mass of thegluon particle field surrounding the quark.[7] These masses typically have very different values. As noted, most of a proton's mass comes from the gluons that bind the constituent quarks together, rather than from the quarks themselves. While gluons are inherently massless, they possess energy— to be more specific, quantum chromodynamics binding energy (QCBE)—and it is this that contributes so greatly to the overall mass of the proton (seemass in special relativity). A proton has a mass of approximately 938 MeV/c2, of which the rest mass of its three valence quarks contributes only about 11 MeV/c2; much of the remainder can be attributed to the gluons'QCBE.[8]
The internal dynamics of the proton are complicated, because they are determined by the quarks' exchanging gluons, and interacting with various vacuum condensates. Lattice QCD provides a way of calculating the mass of the proton directly from the theory to any accuracy, in principle. The most recent calculations[9][10] claim that the mass is determined to better than 4% accuracy, even to 1% accuracy (see Figure S5 in Dürr et al.[10]). These claims are still controversial, because the calculations cannot yet be done with quarks as light as they are in the real world. This means that the predictions are found by a process of extrapolation, which can introduce systematic errors.[11] It is hard to tell whether these errors are controlled properly, because the quantities that are compared to experiment are the masses of the hadrons, which are known in advance.
These recent calculations are performed by massive supercomputers, and, as noted by Boffi and Pasquini: "a detailed description of the nucleon structure is still missing because ... long-distance behavior requires a nonperturbative and/or numerical treatment..."[12] More conceptual approaches to the structure of the proton are: the topological soliton approach originally due to Tony Skyrme and the more accurate AdS/QCD approachthat extends it to include a string theory of gluons, various QCD-inspired models like the bag model and the constituent quark model, which were popular in the 1980s, and the SVZ sum rules, which allow for rough approximate mass calculations. These methods do not have the same accuracy as the more brute-force lattice QCD methods, at least not yet.
Charge radius
The internationally-accepted value of the proton's charge radius is 0.8768 fm (see orders of magnitude for comparison to other sizes). This value is based on measurements involving a proton and an electron.
However, since 5 July 2010, an international research team has been able to make measurements involving an exotic atom made of a proton and a negatively-charged muon. After a long and careful analysis of those measurements, the team concluded that the root-mean-square charge radius of a proton is "0.84184(67) fm, which differs by 5.0 standard deviations from the CODATA value of 0.8768(69) fm".[13] In January 2013 an updated value for the charge radius of proton—0.84087(39) fm was published. The precision was improved by 1.7 times, but the difference with CODATA value persisted at 7σ significance.[14]
The international research team that obtained this result at the Paul Scherrer Institut (PSI) in Villigen (Switzerland) includes scientists from the Max Planck Institute of Quantum Optics (MPQ) in Garching, the Ludwig-Maximilians-Universität (LMU) Munich and the Institut für Strahlwerkzeuge (IFWS) of the Universität Stuttgart (both from Germany), and the University of Coimbra, Portugal.[15][16] They are now attempting to explain the discrepancy, and re-examining the results of both previous high-precision measurements and complicated calculations. If no errors are found in the measurements or calculations, it could be necessary to re-examine the world's most precise and best-tested fundamental theory: quantum electrodynamics.[17]
Interaction of free protons with ordinary matter
Although protons have affinity for oppositely-charged electrons, free protons must lose sufficient velocity (and kinetic energy) in order to become closely associated and bound to electrons, since this is a relatively low-energy interaction. High energy protons, in traversing ordinary matter, lose energy by collisions with atomic nuclei, and by ionization of atoms (removing electrons) when until they are slowed sufficiently to be captured by the electron cloud in a normal atom.
However, in such an association with an electron, the character of the bound proton is not changed, and it remains a proton. The attraction of low-energy free protons to any electrons present in normal matter (such as the electrons in normal atoms) causes free protons to stop and to form a new chemical bond with an atom. Such a bond happens at any sufficiently "cold" temperature (i.e., comparable to temperatures at the surface of the Sun) and with any type of atom. Thus, in interaction with any type of normal (non-plasma) matter, low-velocity free protons are attracted to electrons in any atom or molecule with which they come in contact, causing the proton and molecule to combine. Such molecules are then said to be "protonated", and chemically they often,
نظرات شما عزیزان: